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Abstract. We present a new optimization-based, conservative, and quasi-monotone
method for passive tracer transport. The scheme combines high-order spectral element
discretization in space with semi-Lagrangian time stepping. Solution of a singly linearly
constrained quadratic program with simple bounds enforces conservation and physically
motivated solution bounds. The scheme can handle efficiently a large number of pas-
sive tracers because the semi-Lagrangian time stepping only needs to evolve the grid
points where the primitive variables are stored and allows for larger time steps than a
conventional explicit spectral element method. Numerical examples show that the use
of optimization to enforce physical properties does not affect significantly the spectral
accuracy for smooth solutions. Performance studies reveal the benefits of high-order ap-
proximations, including for discontinuous solutions.

1 INTRODUCTION

In this paper we present a semi-Lagrangian spectral element method (SL-SEM) for the
solution of the scalar transport equation for a positive density function ρ,

∂ρ

∂t
+∇ · (vρ) = 0, (1)

1Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corpo-
ration, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.
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and the related equation
∂ρq

∂t
+∇ · ρqv = 0 (2)

for transport of a passive tracer with mixing ratio q. Equations (1)–(2) imply that

∂q

∂t
+ v · ∇q = 0 , (3)

that is, the passive tracer is constant along the characteristics. Although (3) is relatively
simple, atmospheric models may involve large numbers of passive tracers, which makes
their solution a major part of the computational cost.

The use of SEM for the spatial discretization of (3) offers important computational
advantages such as a diagonal mass matrix and arbitrary order of accuracy [9]. However,
in combination with an explicit time stepping scheme SEM, like other high-order methods,
suffers from a severe, stability imposed, time step restriction.

On the other hand, schemes that adopt a Lagrangian viewpoint [3] and directly ap-
proximate the motion of “fluid particles” under a given velocity field have the potential
to avoid restrictive CFL stability conditions. This makes such time stepping schemes
particularly attractive for use with high-order spatial discretizations; see, e.g., [4, 11, 5]
for some recent efforts to combine SEM with semi-Lagrangian time stepping.

An important complaint, though, about SL-SEM schemes is that they do not neces-
sarily preserve physical properties such as conservation of total mass, or local solution
bounds. Yet, such properties are often critical for accurate and physically consistent sim-
ulations of atmospheric models. This is especially true for schemes employing high-order
spatial discretizations because in the presence of solution discontinuities such methods
are prone to large unphysical oscillations, known as Runge or Gibbs phenomena.

In this work we combine the attractive traits of a parent SL-SEM with a novel,
optimization-based strategy for the enforcement of the relevant physical properties [1].
Specifically, the raw high-order solution of the SL-SEM defines an optimization target,
whereas mass conservation and physically motivated local solution bounds provide the op-
timization constraints. The actual solution is then determined by solving a singly linearly
constrained quadratic program with simple bounds, which can be done very efficiently
[2]. Similar ideas have been applied in an Eulerian spectral element method [6], however
in the context of explicit time stepping. Our approach allows for the same high-order
accuracy but avoids the stringent time stepping restriction experienced in that work.

2 PRELIMINARIES

2.1 Scalar advection

The basic problem considered in this work is the numerical solution of the multi-
dimensional scalar advection equation (3). Atmospheric models require simultaneous
advection of many tracers, which makes this problem a major source of computational
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cost. A semi-Lagrangian method would be ideal for this for two reasons. First it would
allow much larger time steps than an Eulerian method. Second, to advect multiple tracer
values located at a grid point, the method moves that point along a characteristic line
and then computes the updated solution by interpolating the tracer values at the new
point location. As a result, the cost to track the characteristics is amortized over a large
number of passive tracer values.

This work focuses on divergence-free velocity fields. In this case equation (1) has the
same form as (3), and

∫
Ω qdV is a conserved quantity. Thus, we present the method for

(3) alone. Formulations for general velocities will be considered in a forthcoming paper.

2.2 Spatial discretization

In this work we combine spatial discretization by spectral elements with semi-Lagrangian
time stepping. For simplicity we describe the approach in two dimensions. Extension of
the main ideas to three dimensions is straightforward. Thus, in what follows K(Ω) is a
conforming partition of a bounded region Ω ∈ R2 into quadrilateral cells κi, i = 1, . . . , K.

In the spectral element method the basis functions on the reference quadrilateral
κ̂ = [−1, 1]2 are Lagrange polynomials corresponding to a tensor product grid of Gauss-
Legendre-Lobatto (GLL) nodes. Specifically, let N = {ξi}r+1

i=1 denote a set of GLL nodes
in [−1, 1] and let

X̂ = {(ξi, ξj) | ξi, ξj ∈ N}
be the corresponding GLL tensor product grid in κ̂. The associated reference spectral
element basis functions {φ̂ij} are rth degree Lagrange polynomials such that

φ̂ij(ξl, ξk) = δliδkj . (4)

Given an element κm ∈ K(Ω), let Fm be the isoparametric map defined by (4), which
takes the reference element into κm, i.e., Fm(κ̂) = κm. The image of X̂ under Fm

Xm = {xij = Fm(ξi, ξj) | ξi, ξj ∈ N}

provides a GLL tensor product grid on κm. We define the spectral element basis {φkl}
on K(Ω) by pullback, i.e., the local basis set {φmij}r+1

i=1 on an element κm comprises the
functions

φmij (x) = φ̂ij ◦ F−1
m (x) .

The spectral element space Qr = span{φkl}. Although the accuracy of the GLL nodes is
slightly less than that of Gauss-Legendre nodes (2r − 1 vs. 2r + 1 for r + 1 points), the
use of the former brings about some very attractive computational properties.

• They display asymptotically optimal Lebesgue Constant growth [10].

• The associated GLL quadrature does not significantly degrade the accuracy of the
discrete solution.
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• The basis (4) is orthogonal with respect to the GLL points, which results in a
diagonal mass matrix when using them as quadrature points for SEM.

• Inclusion of the endpoints of the interval allows to maintain inter-element continuity.

The ability to maintain inter-element continuity is important for the stability of the
spectral element method. For instance, using Gauss-Legendre nodes to implement a
semi-Lagrangian scheme may introduce large oscillations due to solution discontinuities
across element interfaces. For brevity, we restrict attention to bi-cubic basis functions φ̂ij.
In this case the relevant set N contains the following four GLL nodes:

X =
{
−1,−

√
1/5,

√
1/5, 1

}
(5)

2.3 A parent semi-Lagrangian spectral element method (SL-SEM)

Let x̃(t) be the solution of the characteristic equation

dx̃

dt
= v and x̃(0) = x̃0, (6)

and let q(x, t) be a solution of (3). Then,

d

dt
q(x̃(t), t) = ∂q

∂t
+ dx̃

dt
· ∇q = ∂q

∂t
+ v · ∇q = 0. (7)

In other words, q is constant along the characteristics x̃(t). Thus, if q is known at x̃(0) its
values along x̃(t) can be determined by tracking the characteristic line. This observation
forms the basis of semi-Lagrangian methods.

2.3.1 Semi-Lagrangian time stepping scheme

The semi-Lagrangian approach solves equation (3) by breaking it up into a series of
ODEs of the form (6) coupled with an interpolation. To describe the basic scheme let
X be the union of all GLL points in the mesh K(Ω), i.e., X = ∪κmX

m. Suppose that
the values of q at the current time step tn are known at all points in X. To find the
approximation of q at the GLL points at tn+1 = tn + ∆t we track these points back along
the characteristic lines using X as initial data for (6). Succinctly, the two steps are

Trace back: ∀xij ∈ X solve: dx̃ij

dt
= −v in [tn, tn+1] with x̃ij(tn) = xij,

Interpolate: q(xij, tn+1) := q(x̃ij(tn+1), tn).
(8)

The point x̃ij(tn+1) is generally referred to as the “trace back” of the GLL point xij ∈ X.
In a nutshell, the parent semi-Lagrangian scheme transports the function q back along
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Figure 1: The SL-SEM traces back the GLL set along the characteristics x̃(t) and then uses the spectral
basis to interpolate q(x̃(tn+1), tn). The interpolated values provide the approximation q(xij , tn+1) of q
at the GLL points at the next time step.

the characteristics and then uses the spectral element basis to interpolate its value at
x̃ij(tn+1); see Figure 2.3.1.

Although formally of high-order, the parent SL-SEM does not preserve local solution
bounds. A simple solid body rotation example illustrates this fact and motivates the need
for an optimization-based solution to preserve relevant physical properties. Specifically, we
apply the SL-SEM to advect a discontinuous profile given by the slotted Zalesak cylinder
[7] using the rotational velocity field

v =
[
(0.5− y) (0.5− x)

]T
. (9)

The velocity field (9) rotates the initial profile around the center of the unit square with
period 2π. There is no deformation and the velocity field is divergence free.

Figure 2(b) compares the initial profile with the SL-SEM solution after one full revo-
lution. The exact solution satisfies global solution bounds and should remain between 0
and 1. The side view in Figure 2(c) clearly shows that the numerical solution develops
spurious oscillations and significantly violates the global solution bounds.

3 OPTIMIZATION-BASED SL-SEM

In this section we combine the SL-SEM with an optimization-based approach to enforce
conservation and local solution bounds. We note that in Eulerian methods preservation of
local bounds is accomplished through the use of limiters to obtain monotone reconstruc-
tions of the primitive variables. This prevents the numerical solution from developing new
extrema.

The theory of monotonicity preserving limiters is well understood and developed for
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Figure 2: SL-SEM solution of the solid body rotation problem with a slotted cylinder initial condition
on an 80× 80 uniform grid with CFL = 0.7. (a) Initial profile; (b) solution after one revolution; (c) side
view after one revolution. The discontinuous initial profile results in spurious oscillations.

low-order finite volume methods [8]. However, because limiters modify the reconstruction
process their application to high-order methods may degrade the accuracy. In fact, for
such methods it is not clear how to preserve monotonicity without harming accuracy in
smooth regions, or even if that is possible.

In contrast, following the ideas of [1] we separate reconstruction from the enforcement
of physical properties such as solution bounds and conservation. To this end, we treat
the solution of the parent SL-SEM as an optimization target, whereas the local solution
bounds and mass conservation define the optimization constraints. The goal is to find
the spectral element function that is the closest to the target field and simultaneously
satisfies the constraints.

In particular, one can enforce bounds on the interpolation operator itself, giving com-
pletely decoupled bounds for each individual degree of freedom. Because the type of lower
and upper bounds introduced are not guaranteed to enforce exact monotonicity, we refer
to this type of methods as quasi-monotone [6].
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Optimization-based SL-SEM. Given SEM approximation qn(x) ≈ q(x, tn) the fol-
lowing algorithm computes the optimization-based SL-SEM solution qn+1(x) ≈ q(x, tn+1)
at the next time step:

1. Trace back: ∀xij ∈ X solve: dx̃ij

dt
= −v in [tn, tn+1] with x̃ij(tn) = xij.

2. Interpolate and set target: q̃n+1(xij) := qn(x̃ij(tn+1)).

3. Determine lower and upper bounds q
ij

and qij, respectively for qn+1(xij).

4. Determine qn+1(x) by solving the optimization problem:

qn+1 = arg min
q∈Qr

‖q − q̃n+1‖2
0 subject to


∫

Ω
qdΩ =

∫
Ω
qndΩ (Conservation)

q
ij
≤ q(xij) ≤ qij (Local bounds)

(10)

3.1 Determination of local solution bounds

Because the solution is constant along the characteristic lines, we can determine q
ij

and
qij by examining solution values in a neighborhood of the trace back point x̃ij(tn+1). In
this paper we adopt an approach where these bounds are set by computing the minimum
and maximum solution values at the GLL points in the neighborhood of the element
containing x̃ij(tn+1). Given κi ∈ K(Ω) let B(κi) be the set of all its neighbors and κi
itself.

Local solution bounds. Given a trace back point x̃ij(tn+1) the following procedure
determines local solution bounds for the optimization-based SL-SEM:

1. Find element κm ∈ K(Ω) such that x̃ij(tn+1) ∈ κm.

2. Define χm = {xkl|xkl ∈ X and xkl ∈ B(κm)}.

3. Set bounds q
ij

= minx∈χm qn(x) and qij = maxx∈χm qn(x).

3.2 Algebraic form of the optimization problem

For notational simplicity we drop the time step index from the target and simply write
q̃. The coefficient vectors of q̃ and the state q are denoted by q̃ and q, respectively.
Expanding the objective yields

‖q − q̃‖2
0 =

r+1∑
i,j=1

r+1∑
k,l=1

(qijqkl − 2qij q̃kl + q̃ij q̃kl)
∫

Ω
φijφkldΩ, (11)
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Figure 3: Optimization-based SL-SEM solution of the solid body rotation problem with initial profiles
of varying degrees of smoothness; 100 × 100 uniform grid, bi-cubic elements, and CFL=0.7. (a) Initial
time; (b) Solution after one full revolution.

where φij are the spectral basis functions corresponding to the GLL nodes in X. Thus,

‖q − q̃‖2
2 = qTMq + cTq + c0; c = −2M q̃; c0 = q̃TM q̃ and Mij,kl =

∫
Ω
φijφkldΩ.

The SEM approximates the integrals above by using the GLL points in X along with
suitable weights {wij}. Let w be the vector of these weights. Since the SEM basis
functions are orthogonal with respect to the GLL nodes it follows that M = diag(wij) =
w. As a result, the SL-SEM optimization problem (10) assumes the following simple
algebraic form

qn+1 = arg min
q

qTMq+cTq+c0 subject to

 wTq = wTqn (Conservation)
q ≤ q ≤ q (Local bounds)

(12)

Problem (12) is a singly linearly constrained quadratic program (QP) with simple bounds.
The structure of this QP lends itself to an extremely efficient solution method; see [2].

4 NUMERICAL EXAMPLES

4.1 Solid body rotation test

To test the optimization-based SL-SEM we combine the rotational velocity field from
Section 2.3.1 with an initial profile comprising a notched cylinder, a smooth hump and
a cone. This example is a standard advection test introduced in [7]. Figure 3 shows the
initial profile and the numerical solution after one full revolution. The plot in Fig.3(b)
reveals minimal smearing of the discontinuous profiles and an essentially monotone solu-
tion.
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Figure 4: Optimization-based SL-SEM solution of the modified deformational flow example using 80×80
uniform grid and bi-cubic basis functions. (a) Initial profile; (b) Solution at maximum deformation time.

4.2 Modified deformational flow test

This example uses a modified version of the deformational flow test on the sphere, which
is standard in the climate modeling community [6]. The goal is to examine the convergence
rates of the optimization-based SL-SEM. Specifically, we combine the divergence-free
velocity field v =

[
u v

]T
where

u = sin(πx) sin(πx) sin(2πy) cos
(
π
t

T

)
v = − sin(πy)2 sin(2πx) cos

(
π
t

T

)
(13)

with a Gaussian initial profile defined on Ω = [0, 1]× [0, 1] by

q(x1, x2) = sin(2πx)4 sin(2πy)4 exp
(
−β((x1 − x0)2 + (x2 − y0)2)

)
(14)

where β = −40.0 and (x0, y0) = (0.7, 0.5). The velocity field is designed so that after
time t = 2.5 it reverses and the profile returns to the initial condition at 5.0. The initial
profile is infinitely smooth except for the boundary where it is scaled so that it is zero on
∂Ω. This allows us to impose periodic boundary conditions.

Figure 4 shows the initial profile and the solution at the maximum deformation in-
stant t = 2.5. Figure 5 shows the convergence results for this example. We observe a
slight degradation in the accuracy of the L∞ norm errors, while the L1-norm errors are
not significantly affected. This is a very good result for a method that also eliminates
oscillations. A method that is exactly monotonicity preserving would typically truncate
the convergence rate to order 2 even in the L1 norm.
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Figure 5: The effect of optimization-based enforcement of local bounds on convergence rates.

5 PERFORMANCE STUDIES

This section compares several realizations of the optimization-based SL-SEM with dif-
ferent orders of basis functions. The comparison is done using a Gaussian profile and
the slotted Zalesak cylinder both advected by the deformational flow velocity field intro-
duced in Section 4.2. In all cases we use fourth-order Runge Kutta for back-tracing the
characteristics.

In this study the SL-SEM is run over a wide range of mesh and time step sizes using
several different polynomial orders. The purpose of this study is to examine the accuracy
of the method as a function of the spatial resolution, as measured by the number of
spatial degrees of freedom and the temporal resolution, determined by a varying time
step size. The accuracy is measured by the L2-norm error. Figures 6(a) and 6(b) reveal
an interesting behavior of the optimization-based SL-SEM. Unlike with Eulerian schemes,
there is an optimal time step size. The reason for this is that every interpolation instance
builds up some amount of error. Thus, there appears to be an optimal time step size which
balances the accumulation of the errors with the available resolution. Also, as expected,
increasing the number of spatial degrees of freedom tends to reduce errors.

All numerical computations in this section are done on a workstation with an Intel core
i5-2500 processor and 8 Gigabytes of memory.

6 CONCLUSIONS

We presented an optimization-based semi-Lagrangian spectral element method for a
scalar advection equation. The method combines a characteristic-based approach with
optimization to enforce preservation of physical properties such as global conservation
and local solution bounds. Convergence studies reveal minimal degradation of L1-norm

10



Pavel B. Bochev, Scott A. Moe, Kara J. Peterson and Denis Ridzal

0
200

400
600 0 0.1 0.2 0.3 0.4 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

 

timestep sizedofs

 

L
2

 e
rr

o
r

p=1
p=2
p=3
p=4

(a) Discontinuous initial condition

0
200

400
600 0 0.1 0.2 0.3 0.4 0.5

−5

−4

−3

−2

−1

0

 

timestep sizedofs

 

L
2

 e
rr

o
r

p=1
p=2
p=3
p=4

(b) Gaussian initial condition

Figure 6: Parameter study of the approximation error in the optimization-based SL-SEM as function
of the time step size and the number of spatial degrees-of-freedom for different polynomial degrees.

convergence rate for smooth solutions.
A parameter study was performed to characterize accuracy with respect to the number

of degrees of freedom and the time step size. The study reveals the existence of an optimal
time step for a given spatial resolution and indicates that higher polynomial degrees
outperform lower degrees even on discontinuous profiles, which confirms the utility of the
proposed approach in the context of high-order approximations.
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